首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Fractal aggregation kinetics contributions to thermal conductivity of nano-suspensions in unsteady thermal convection
  • 本地全文:下载
  • 作者:Jize Sui ; Peng Zhao ; Bandar Bin-Mohsin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep39446
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Nano-suspensions (NS) exhibit unusual thermophysical behaviors once interparticle aggregations and the shear flows are imposed, which occur ubiquitously in applications but remain poorly understood, because existing theories have not paid these attentions but focused mainly on stationary NS. Here we report the critical role of time-dependent fractal aggregation in the unsteady thermal convection of NS systematically. Interestingly, a time ratio λ = tp/tm (tp is the aggregate characteristic time, tm the mean convection time) is introduced to characterize the slow and fast aggregations, which affect distinctly the thermal convection process over time. The increase of fractal dimension reduces both momentum and thermal boundary layers, meanwhile extends the time duration for the full development of thermal convection. We find a nonlinear growth relation of the momentum layer, but a linear one of the thermal layer, with the increase of primary volume fraction of nanoparticles for different fractal dimensions. We present two global fractal scaling formulas to describe these two distinct relations properly, respectively. Our theories and methods in this study provide new evidence for understanding shear-flow and anomalous heat transfer of NS associated non-equilibrium aggregation processes by fractal laws, moreover, applications in modern micro-flow technology in nanodevices.
国家哲学社会科学文献中心版权所有