首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A-Kinase Anchoring Protein 4 (AKAP4) is an ERK1/2 substrate and a switch molecule between cAMP/PKA and PKC/ERK1/2 in human spermatozoa
  • 本地全文:下载
  • 作者:Liat Rahamim Ben-Navi ; Tal Almog ; Zhong Yao
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep37922
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Mammalian spermatozoa undergo capacitation and acrosome reaction in order to fertilize the egg. The PKC-ERK1/2 pathway plays an important role in human spermatozoa motility, capacitation and the acrosome reaction. Here we demonstrate that ERK1/2 phosphorylates proAKAP4 on Thr265 in human spermatozoa in vitro and in vivo. Cyclic AMP (cAMP) had no effect on ERK1/2 activity in human spermatozoa, but stimulated the MAPK in mouse pituitary LβT2 gonadotrope cells. cAMP via PKA attenuates PKC-dependent ERK1/2 activation only in the presence of proAKAP4. St-HT31, which disrupts PKA-regulatory subunit II (PKA-RII) binding to AKAP abrogates the inhibitory effect of cAMP in human spermatozoa and in HEK293T cells expressing proAKAP4. In transfected HEK293T cells, PMA relocated proAKAP4, but not proAKAP4-T265A to the Golgi in an ERK1/2-dependnet manner. Similarly, AKAP4 is localized to the spermatozoa principal piece and is relocated to the mid-piece and the postacrosomal region by PMA. Furthermore, using capacitated sperm we found that cAMP reduced PMA-induced ERK1/2 activation and acrosome reaction. Thus, the physiological role of the negative crosstalk between the cAMP/PKA/AKAP4 and the PKC/ERK1/2 pathways is to regulate capacitation and acrosome reaction.
国家哲学社会科学文献中心版权所有