摘要:An extremely sensitive dependence of the electronic properties of SnOx film on sputtering deposition power is discovered experimentally. The carrier transport sharply switches from n-type to p-type when the sputtering power increases by less than 2%. The best n-type carrier transport behavior is observed in thin-film transistors (TFTs) produced at a sputtering power just below a critical value (120 W). In contrast, at just above the critical sputtering power, the p-type behavior is found to be the best with the TFTs showing the highest on/off ratio of 1.79 × 10(4) and the best subthreshold swing among all the sputtering powers that we have tested. A further increase in the sputtering power by only a few percent results in a drastic drop in on/off ratio by more than one order of magnitude. Scanning electron micrographs, x-ray diffraction spectra, x-ray photoelectron spectroscopy, as well as TFT output and transfer characteristics are analyzed. Our studies suggest that the sputtering power critically affects the stoichiometry of the SnOx film.