摘要:Al substitution in hematite is ubiquitous in soils. With the increase of Al amount, the hematite morphology changes from rhombohedral crystals to disk-shaped ones, but the underlying mechanism is poorly understood. Herein, a series of Al-substituted hematite were synthesized and characterized by synchrotron X-ray diffraction (SXRD), field emission scanning electron microscopy (FESEM), high resolution electron transmission microscopy (HRTEM) and extended X-ray absorption fine structure (EXAFS) spectroscopy, to investigate the effects of Al(3+) substitution on the hematite structure and morphology. EXAFS and Rietveld structural refinement analyses find an increase in face-sharing (along c axis) Fe-Me (Me = Al, Fe) distances, edge-sharing (in a-b plane) Fe-Me (Me = Al, Fe) distances, and O-O average distances. Moreover, the face-sharing Fe-Me distances and O-O distances along c axis increase more significantly. This indicates a more apparent decrease in the reticular densities of Fe and O along the direction of c axis, which facilitates faster crystal growth along c axis and results in the evolution of morphology of Al-substituted hematite to disk-shaped crystals. The above results provide new insights into the morphology changes and environmental geochemistry behaviors of Al-contained hematite in soils, and are benefit for the control of crystal morphologies during its application as environmentally-friendly materials.