首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Observation of re-entrant spin reorientation in TbFe1−xMnxO3
  • 本地全文:下载
  • 作者:Yifei Fang ; Ya Yang ; Xinzhi Liu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep33448
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We report a spin reorientation from Γ4(Gx, Ay, Fz) to Γ1(Ax, Gy, Cz) magnetic configuration near room temperature and a re-entrant transition from Γ1(Ax, Gy, Cz) to Γ4(Gx, Ay, Fz) at low temperature in TbFe1-xMnxO3 single crystals by performing both magnetization and neutron diffraction measurements. The Γ4 - Γ1 spin reorientation temperature can be enhanced to room temperature when x is around 0.5 ~ 0.6. These new transitions are distinct from the well-known Γ4 - Γ2 transition observed in TbFeO3, and the sinusoidal antiferromagnetism to complex spiral magnetism transition observed in multiferroic TbMnO3. We further study the evolution of magnetic entropy change (-ΔSM) versus Mn concentration to reveal the mechanism of the re-entrant spin reorientation behavior and the complex magnetic phase at low temperature. The variation of -ΔSM between a and c axes indicates the significant change of magnetocrystalline anisotropy energy in the TbFe1-xMnxO3 system. Furthermore, as Jahn-Teller inactive Fe(3+) ions coexist with Jahn-Teller active Mn(3+) ions, various anisotropy interactions, compete with each other, giving rise to a rich magnetic phase diagram. The large magnetocaloric effect reveals that the studied material could be a potential magnetic refrigerant. These findings expand our knowledge of spin reorientation phenomena and offer the alternative realization of spin-switching devices at room temperature in the rare-earth orthoferrites.
国家哲学社会科学文献中心版权所有