首页    期刊浏览 2024年07月22日 星期一
登录注册

文章基本信息

  • 标题:Pulled microcapillary tube resonators with electrical readout for mass sensing applications
  • 本地全文:下载
  • 作者:Donghyuk Lee ; Joonhui Kim ; Nam-Joon Cho
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep33799
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:This paper reports a microfabrication-free approach to make hollow channel mass sensors by pulling a glass capillary and suspending it on top of a machined jig. A part of the pulled section makes simple contact with an actuation node and a quartz tuning fork (QTF) which acts as a sensing node. The two nodes define a pulled micro capillary tube resonator (PμTR) simply supported at two contacts. While a piezo actuator beneath the actuation node excites the PμTR, the QTF senses the resonance frequency of the PμTR. The proposed concept was validated by electrical and optical measurements of resonant spectra of PμTR. Then, different liquid samples including water, ethanol, glycerol, and their binary mixtures were introduced into the PμTR and the resonance frequency of the PμTR was measured as a function of liquid density. Density responsivity of -3,088 Hz-g(-1) cm(3) obtained is comparable to those of microfabricated hollow resonators. With a micro droplet generation chip configured in series with the PμTR, size distribution of oil droplets suspended in water was successfully measured with the radius resolution of 31 nm at the average droplet radius, 28.47 μm. Overall, typical off-the-shelf parts simply constitute a resonant mass sensing system along with a convenient electrical readout.
国家哲学社会科学文献中心版权所有