首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
  • 本地全文:下载
  • 作者:Han Zhou ; Lusi Zhang ; Dongyang Zhang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep37752
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (-SO3(-)) that can effectively attract Ni(2+), Co(2+), Zn(2+) ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co3O4, NiCoO2 and ZnCo2O4) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo2O4@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g(-1) after 100 cycles at a current density of 400 mAg(-1). For EC applications, the NiCoO2@CNT exhibits a high capacitance of 1360 Fg(-1) at current densities of 10 Ag(-1) after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices.
国家哲学社会科学文献中心版权所有