摘要:Magnetic resonance (MR) methods to detect and quantify fluorine (19F) nuclei provide the opportunity to study the fate of cellular transplants in vivo. Cells are typically labeled with 19F nanoparticles, introduced into living organisms and tracked by 19F MR methods. Background-free imaging and quantification of cell numbers are amongst the strengths of 19F MR-based cell tracking but challenges pertaining to signal sensitivity and cell detection exist. In this study we aimed to overcome these limitations by manipulating the aminophospholipid composition of 19F nanoparticles in order to promote their uptake by dendritic cells (DCs). As critical components of biological membranes, phosphatidylethanolamines (PE) were studied. Both microscopy and MR spectroscopy methods revealed a striking (at least one order of magnitude) increase in cytoplasmic uptake of 19F nanoparticles in DCs following enrichment with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE). The impact of enriching 19F nanoparticles with PE on DC migration was also investigated. By manipulating the nanoparticle composition and as a result the cellular uptake we provide here one way of boosting 19F signal per cell in order to overcome some of the limitations related to 19F MR signal sensitivity. The boost in signal is ultimately necessary to detect and track cells in vivo.