摘要:MG7-Ag, a specific gastric cancer-associated antigen, can be used to non-invasively monitor gastric cancer by molecular imaging with positron emission tomography/computed tomography (PET/CT). In this study, we prepared and evaluated a 68Ga-labeled MG7 antibody as a molecular probe for nanoPET/CT imaging of gastric cancer in a BGC-823 tumor xenografted mouse model. Macrocyclic chelator 1,4,7-triazacyclononane-N,N0,N00-triacetic acid (NOTA)-conjugated MG7 antibody was synthesized and radiolabeled with 68Ga (t1/2 = 67.71 min). Then, 68Ga-NOTA-MG7 was tested using in vitro cytological studies, in vivo nanoPET/CT and Cerenkov imaging studies as well as ex vivo biodistribution and histology studies. The in vitro experiments demonstrated that 68Ga-NOTA-MG7 has an excellent radiolabeling efficiency of approximately 99% without purification, and it is stable in serum after 120 min of incubation. Cell uptake and retention studies confirmed that 68Ga-NOTA-MG7 has good binding affinity and tumor cell retention. For the nanoPET imaging study, the predominant uptake of 68Ga-NOTA-MG7 was visualized in tumor, liver and kidneys. The tumor uptake reached at its peak (2.53 ± 0.28%ID/g) at 60 min pi. Cherenkov imaging also confirmed the specificity of tumor uptake. Moreover, the biodistribution results were consistent with the quantification data of nanoPET/CT imaging. Histologic analysis also demonstrated specific staining of BGC-823 tumor cell lines.