首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A regulatory loop containing miR-26a, GSK3β and C/EBPα regulates the osteogenesis of human adipose-derived mesenchymal stem cells
  • 本地全文:下载
  • 作者:Zi Wang ; Qing Xie ; Zhang Yu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • 期号:1
  • DOI:10.1038/srep15280
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Elucidating the molecular mechanisms responsible for osteogenesis of human adipose-derived mesenchymal stem cells (hADSCs) will provide deeper insights into the regulatory mechanisms of this process and help develop more efficient methods for cell-based therapies. In this study, we analysed the role of miR-26a in the regulation of hADSC osteogenesis. The endogenous expression of miR-26a increased during the osteogenic differentiation. The overexpression of miR-26a promoted hADSC osteogenesis, whereas osteogenesis was repressed by miR-26a knockdown. Additionally, miR-26a directly targeted the 3′UTR of the GSK3β, suppressing the expression of GSK3β protein. Similar to the effect of overexpressing miR-26a, the knockdown of GSK3β promoted osteogenic differentiation, whereas GSK3β overexpression inhibited this process, suggesting that GSK3β acted as a negative regulator of hADSC osteogenesis. Furthermore, GSK3β influences Wnt signalling pathway by regulating β-catenin, and subsequently altered the expression of its downstream target C/EBPα. In turn, C/EBPα transcriptionally regulated the expression of miR-26a by physically binding to the CTDSPL promoter region. Taken together, our data identified a novel feedback regulatory circuitry composed of miR-26a, GSK3β and C/EBPα, the function of which might contribute to the regulation of hADSC osteogenesis. Our findings provided new insights into the function of miR-26a and the mechanisms underlying osteogenesis of hADSCs.
国家哲学社会科学文献中心版权所有