首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces
  • 本地全文:下载
  • 作者:Malay Dalui ; W.-M. Wang ; T. Madhu Trivikram
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • 期号:1
  • DOI:10.1038/srep11930
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018 W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.
国家哲学社会科学文献中心版权所有