摘要:Chemosensory proteins (CSPs) have been predicted to be involved in development; however, direct evidence for their involvement is lacking, and genetic basis is largely unknown. To determine the function of the chemosensory protein 9 ( Si-CSP9 ) gene in Solenopsis invicta, we used RNA interference to silence Si-CSP9 in 3rd-instar larvae. The 3rd-instar larvae failed to shed their cuticle after being fed Si-CSP9 -directed siRNA, and expression profiling of RNAi-treated and untreated control larvae showed that 375 genes were differentially expressed. Pathway enrichment analysis revealed that 4 pathways associated with larval development were significantly enriched. Blast analysis revealed that one fatty acid amide hydrolase ( FAAH ) gene was up-regulated and 4 fatty acid synthase ( FAT ) genes and one protein kinase DC2 gene ( PKA ) were down-regulated in the enriched pathways. Significantly higher expression of these genes was found in 4th-instar larvae, and Pearson correlation analysis of the expression patterns revealed significant relationships among Si-CSP9, PKA, FAAH , and FAT1-4 . Moreover, we confirmed that expression levels of Si-CSP9, FAAH, and FAT1-4 were significantly reduced and that the development of 3rd-instar larvae was halted with PKA silencing. These results suggest that Si-CSP9 and PKA may be involved in the network that contributes to development of 3rd-instar larvae.