首页    期刊浏览 2025年04月09日 星期三
登录注册

文章基本信息

  • 标题:Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries
  • 本地全文:下载
  • 作者:Lilai Liu ; Maozhong An ; Peixia Yang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • 期号:1
  • DOI:10.1038/srep09055
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g−1 are 2213 and 1402 mA h g−1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g−1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g−1, respectively. Even at a high current density of 1000 mA g−1, the first discharge and charge capacities are 1502 and 876 mA h g−1, and the discharge specific capacities remains 1057 and 677 mA h g−1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.
国家哲学社会科学文献中心版权所有