摘要:Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b+Ly-6Chi monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11chiPDCA-1int/lo DCs without alteration in CD11cintPDCA-1hi plasmacytoid DC number, we found that CD11chi DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b+Ly-6Chi monocytes and higher expression of CC chemokines. More interestingly, selective CD11chi DC ablation provided altered differentiation and function of infiltrated CD11b+Ly-6Chi monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b+Ly-6Chi monocytes generated in CD11chi DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11chi DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b+Ly-6Chi monocytes.