首页    期刊浏览 2024年06月29日 星期六
登录注册

文章基本信息

  • 标题:Bilirubin augments Ca2+ load of developing bushy neurons by targeting specific subtype of voltage-gated calcium channels
  • 本地全文:下载
  • 作者:Min Liang ; Xin-Lu Yin ; Hai-Bo Shi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-00275-9
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Neonatal brain is particularly vulnerable to pathological levels of bilirubin which elevates and overloads intracellular Ca(2+), leading to neurotoxicity. However, how voltage-gated calcium channels (VGCCs) are functionally involved in excess calcium influx remains unknown. By performing voltage-clamp recordings from bushy cells in the ventral cochlear nucleus (VCN) in postnatal rat pups (P4-17), we found the total calcium current density was more than doubled over P4-17, but the relative weight of VGCC subtypes changed dramatically, being relatively equal among T, L, N, P/Q and R-type at P4-6 to predominantly L, N, R over T and P/Q at P15-17. Surprisingly, acute administration of bilirubin augmented the VGCC currents specifically mediated by high voltage-activated (HVA) P/Q-type calcium currents. This augment was attenuated by intracellular loading of Ca(2+) buffer EGTA or calmodulin inhibitory peptide. Our findings indicate that acute exposure to bilirubin increases VGCC currents, primarily by targeting P/Q-type calcium channels via Ca(2+) and calmodulin dependent mechanisms to overwhelm neurons with excessive Ca(2+). Since P/Q-subtype calcium channels are more prominent in neonatal neurons (e.g. P4-6) than later stages, we suggest this subtype-specific enhancement of P/Q-type Ca(2+) currents likely contributes to the early neuronal vulnerability to hyperbilirubinemia in auditory and other brain regions.
国家哲学社会科学文献中心版权所有