首页    期刊浏览 2024年09月16日 星期一
登录注册

文章基本信息

  • 标题:N-Glycan Modification of a Recombinant Protein via Coexpression of Human Glycosyltransferases in Silkworm Pupae
  • 本地全文:下载
  • 作者:Tatsuya Kato ; Natsumi Kako ; Kotaro Kikuta
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-01630-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Recombinant proteins produced in insect cells and insects, unlike those produced in mammalian cells, have pauci-mannose-type N-glycans. In this study, we examined complex-type N-glycans on recombinant proteins via coexpression of human β-1,2-N-acetylglucosaminyltransferase II (hGnT II) and human β1,4-galactosyltransferase (hGalT I) in silkworm pupae, by using the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system. The actin A3 promoter from B. mori and the polyhedrin promoter from Autographa californica multiple nucleopolyhedroviruses (AcMNPVs) were used to coexpress hGnT II and hGalT I. These recombinant BmNPVs were coexpressed with human IgG (hIgG), hGnT II and hGalT I in silkworm pupae. When hIgG was coexpressed with hGnT II, approximately 15% of all N-glycans were biantennary, with both arms terminally modified with N-acetylglucosamine (GlcNAc). In contrast, when hIgG was coexpressed with both hGnT II and hGalT I under the control of the polyhedrin promoter, 27% of all N-glycans were biantennary and terminally modified with GlcNAc, with up to 5% carrying one galactose and 11% carrying two. The obtained N-glycan structure was dependent on the promoters used for coexpression of hGnT II or hGalT I. This is the first report of silkworm pupae producing a biantennary, terminally galactosylated N-glycan in a recombinant protein. These results suggest that silkworms can be used as alternatives to insect and mammalian hosts to produce recombinant glycoproteins with complex N-glycans.
国家哲学社会科学文献中心版权所有