首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Inhibition of late sodium current suppresses calcium-related ventricular arrhythmias by reducing the phosphorylation of CaMK-II and sodium channel expressions
  • 本地全文:下载
  • 作者:Xiao-Hong Wei ; Shan-Dong Yu ; Lu Ren
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-01056-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Cardiac arrhythmias associated with intracellular calcium inhomeostasis are refractory to antiarrhythmic therapy. We hypothesized that late sodium current (I Na) contributed to the calcium-related arrhythmias. Monophasic action potential duration at 90% completion of repolarization (MAPD90) was significantly increased and ventricular arrhythmias were observed in hearts with increased intracellular calcium concentration ([Ca(2+)]i) by using Bay K 8644, and the increase became greater in hearts treated with a combination of ATX-II and Bay K 8644 compared to Bay K 8644 alone. The prolongations caused by Bay K 8644 and frequent episodes of ventricular tachycardias, both in absence and presence of ATX-II, were significantly attenuated or abolished by late I Na inhibitors TTX and eleclazine. In rabbit ventricular myocytes, Bay K 8644 increased I CaL density, calcium transient and myocyte contraction. TTX and eleclazine decreased the amplitude of late I Na, the reverse use dependence of MAPD90 at slower heart rate, and attenuated the increase of intracellular calcium transient and myocyte contraction. TTX diminished the phosphorylation of CaMKII-δ and Nav 1.5 in hearts treated with Bay K 8644 and ATX-II. In conclusion, late I Na contributes to ventricular arrhythmias and its inhibition is plausible to treat arrhythmias in hearts with increased [Ca(2+)]i.
国家哲学社会科学文献中心版权所有