首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests
  • 本地全文:下载
  • 作者:Jing Zhang ; Xuli Tang ; Siyuan Zhong
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-02486-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Glomalin-related soil protein (GRSP) is known as an important microbial by-product which is crucial for preserving or accumulating soil organic carbon (SOC). However, the underlying mechanisms are not well understood. In this study, we investigated the chemical structures of GRSP and its relationship with SOC using (13)C nuclear magnetic resonance (NMR) in three tropical forests. The three forests, including a planted forest (PF), a secondary forest (MF) and a primary forest (BF), were selected to represent the natural successional process after disturbance in southern China. Results showed that the average concentrations of GRSP were (3.94 ± 1.09) mg cm(-3) and accounting for (3.38 ± 1.15)% of the SOC in the top 10 cm soil. NMR analysis indicated rich aromatic C (~30%) and carboxyl C (~40%) in GRSP, and abundant alkyl C (~30%) and O-alkyl C (~50%) in SOC. The recalcitrance indexes (RI), as defined as the ratio of sum of alkyl C and aromatic C over sum of O-alkyl C and carboxyl C, was (98.6 ± 18.9)%, (145.5 ± 10.9)% and (20.7 ± 0.3)% in GRSP higher than that in SOC in the PF, MF and BF, respectively. This study demonstrated that the stubborn structure of GRSP probably regulate the resistance of SOC sequestration in tropical forests, especially in the planted and secondary forests.
国家哲学社会科学文献中心版权所有