首页    期刊浏览 2025年08月14日 星期四
登录注册

文章基本信息

  • 标题:Alternative splicing shapes transcriptome but not proteome diversity in Physcomitrella patens
  • 本地全文:下载
  • 作者:Igor Fesenko ; Regina Khazigaleeva ; Ilya Kirov
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-02970-z
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Alternative splicing (AS) can significantly impact the transcriptome and proteome of a eukaryotic cell. Here, using transcriptome and proteome profiling data, we analyzed AS in two life forms of the model moss Physcomitrella patens, namely protonemata and gametophores, as well as in protoplasts. We identified 12 043 genes subject to alternative splicing and analyzed the extent to which AS contributes to proteome diversity. We could distinguish a few examples that unambiguously indicated the presence of two or more splice isoforms from the same locus at the proteomic level. Our results indicate that alternative isoforms have a small effect on proteome diversity. We also revealed that mRNAs and pre-mRNAs have thousands of complementary binding sites for long non-coding RNAs (lncRNAs) that may lead to potential interactions in transcriptome. This finding points to an additional level of gene expression and AS regulation by non-coding transcripts in Physcomitrella patens. Among the differentially expressed and spliced genes we found serine/arginine-rich (SR) genes, which are known to regulate AS in cells. We found that treatment with abscisic (ABA) and methyl jasmonic acids (MeJA) led to an isoform-specific response and suggested that ABA in gametophores and MeJA in protoplasts regulate AS and the transcription of SR genes.
国家哲学社会科学文献中心版权所有