首页    期刊浏览 2024年09月21日 星期六
登录注册

文章基本信息

  • 标题:Echo-Planar J-resolved Spectroscopic Imaging using Dual Read-outs: Implementation and Quantitation of Human Brain Metabolites
  • 本地全文:下载
  • 作者:Manoj K. Sarma ; Rajakumar Nagarajan ; Zohaib Iqbal
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-03121-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Attempts have been made to reduce the total scan time in multi-dimensional J-resolved spectroscopic imaging (JRESI) using an echo-planar (EP) readout gradient, but acquisition duration remains a limitation for routine clinical use in the brain. We present here a significant acceleration achieved with a 4D EP-JRESI sequence that collects dual phase encoded lines within a single repetition time (TR) using two bipolar read-out trains. The performance and reliability of this novel 4D sequence, called Multi-Echo based Echo-Planar J-resolved Spectroscopic Imaging (ME-EP-JRESI), was evaluated in 10 healthy controls and a brain phantom using a 3 T MRI/MRS scanner. The prior knowledge fitting (ProFit) algorithm, with a new simulated basis set consisting of macromolecules and lipids apart from metabolites of interest, was used for quantitation. Both phantom and in-vivo data demonstrated that localization and spatial/spectral profiles of metabolites from the ME-EP-JRESI sequence were in good agreement with that of the EP-JRESI sequence. Both in the occipital and temporal lobe, metabolites with higher physiological concentrations including Glx (Glu+Gln), tNAA (NAA+NAAG), mI all had coefficient of variations between 9-25%. In summary, we have implemented, validated and tested the ME-EP-JRESI sequence, demonstrating that multi-echo acquisition can successfully reduce the total scan duration for EP-JRESI sequences.
国家哲学社会科学文献中心版权所有