摘要:The design of systems or models that work robustly under uncertainty and environmental fluctuations is a key challenge in both engineering and science. This is formalized in the design-centering problem, which is defined as finding a design that fulfills given specifications and has a high probability of still doing so if the system parameters or the specifications fluctuate randomly. Design centering is often accompanied by the problem of quantifying the robustness of a system. Here we present a novel adaptive statistical method to simultaneously address both problems. Our method, L p -Adaptation, is inspired by the evolution of robustness in biological systems and by randomized schemes for convex volume computation. It is able to address both problems in the general, non-convex case and at low computational cost. We describe the concept and the algorithm, test it on known benchmarks, and demonstrate its real-world applicability in electronic and biological systems. In all cases, the present method outperforms the previous state of the art. This enables re-formulating optimization problems in engineering and biology as design centering problems, taking global system robustness into account.