首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Multilevel Evolutionary Algorithm that Optimizes the Structure of Scale-Free Networks for the Promotion of Cooperation in the Prisoner’s Dilemma game
  • 本地全文:下载
  • 作者:Penghui Liu ; Jing Liu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-04010-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Understanding the emergence of cooperation has long been a challenge across disciplines. Even if network reciprocity reflected the importance of population structure in promoting cooperation, it remains an open question how population structures can be optimized, thereby enhancing cooperation. In this paper, we attempt to apply the evolutionary algorithm (EA) to solve this highly complex problem. However, as it is hard to evaluate the fitness (cooperation level) of population structures, simply employing the canonical evolutionary algorithm (EA) may fail in optimization. Thus, we propose a new EA variant named mlEA-CPD-SFN to promote the cooperation level of scale-free networks (SFNs) in the Prisoner's Dilemma Game (PDG). Meanwhile, to verify the preceding conclusions may not be applied to this problem, we also provide the optimization results of the comparative experiment (EAcluster), which optimizes the clustering coefficient of structures. Even if preceding research concluded that highly clustered scale-free networks enhance cooperation, we find EAcluster does not perform desirably, while mlEA-CPD-SFN performs efficiently in different optimization environments. We hope that mlEA-CPD-SFN may help promote the structure of species in nature and that more general properties that enhance cooperation can be learned from the output structures.
国家哲学社会科学文献中心版权所有