首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Bootstrap quantification of estimation uncertainties in network degree distributions
  • 本地全文:下载
  • 作者:Yulia R. Gel ; Vyacheslav Lyubchich ; L. Leticia Ramirez Ramirez
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-05885-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We propose a new method of nonparametric bootstrap to quantify estimation uncertainties in functions of network degree distribution in large ultra sparse networks. Both network degree distribution and network order are assumed to be unknown. The key idea is based on adaptation of the "blocking" argument, developed for bootstrapping of time series and re-tiling of spatial data, to random networks. We first sample a set of multiple ego networks of varying orders that form a patch, or a network block analogue, and then resample the data within patches. To select an optimal patch size, we develop a new computationally efficient and data-driven cross-validation algorithm. The proposed fast patchwork bootstrap (FPB) methodology further extends the ideas for a case of network mean degree, to inference on a degree distribution. In addition, the FPB is substantially less computationally expensive, requires less information on a graph, and is free from nuisance parameters. In our simulation study, we show that the new bootstrap method outperforms competing approaches by providing sharper and better-calibrated confidence intervals for functions of a network degree distribution than other available approaches, including the cases of networks in an ultra sparse regime. We illustrate the FPB in application to collaboration networks in statistics and computer science and to Wikipedia networks.
国家哲学社会科学文献中心版权所有