首页    期刊浏览 2024年07月07日 星期日
登录注册

文章基本信息

  • 标题:Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures
  • 本地全文:下载
  • 作者:Mohammad Ehtisham Khan ; Mohammad Mansoob Khan ; Moo Hwan Cho
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-06139-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Cerium oxide nanoparticles (CeO2 NPs) were fabricated and grown on graphene sheets using a facile, low cost hydrothermal approach and subsequently characterized using different standard characterization techniques. X-ray photoelectron spectroscopy and electron paramagnetic resonance revealed the changes in surface states, composition, changes in Ce(4+) to Ce(3+) ratio, and other defects. Transmission electron microscopy (TEM) and high resolution TEM revealed that the fabricated CeO2 NPs to be spherical with particle size of ~10-12 nm. Combination of defects in CeO2 NPs with optimal amount of two-dimensional graphene sheets had a significant effect on the properties of the resulting hybrid CeO2-Graphene nanostructures, such as improved optical, photocatalytic, and photocapacitive performance. The excellent photocatalytic degradation performances were examined by monitoring their ability to degrade Congo red ~94.5% and methylene blue dye ~98% under visible light irradiation. The photoelectrode performance had a maximum photocapacitance of 177.54 Fg(-1) and exhibited regular capacitive behavior. Therefore, the Ce(3+)-ion, surface-oxygen-vacancies, and defects-induced behavior can be attributed to the suppression of the recombination of photo-generated electron-hole pairs due to the rapid charge transfer between the CeO2 NPs and graphene sheets. These findings will have a profound effect on the use of CeO2-Graphene nanostructures for future energy and environment-related applications.
国家哲学社会科学文献中心版权所有