首页    期刊浏览 2024年07月16日 星期二
登录注册

文章基本信息

  • 标题:Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes
  • 本地全文:下载
  • 作者:Zupeng Wang ; Yifei Liu ; Li Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-05377-y
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:An outbreak of kiwifruit bacterial canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) beginning in 2008 caused disaster to the kiwifruit industry. However the mechanisms of interaction between kiwifruit and Psa are unknown. Long noncoding RNAs (lncRNAs) are known to regulate many biological processes, but comprehensive repertoires of kiwifruit lncRNAs and their effects on the interaction between kiwifruit and Psa are unknown. Here, based on in-depth transcriptomic analysis of four kiwifruit materials at three stages of infection with Psa, we identified 14,845 transcripts from 12,280 loci as putative lncRNAs. Hierarchical clustering analysis of differentially-expressed transcripts reveals that both protein-coding and lncRNA transcripts are expressed species-specifically. Comparing differentially-expressed transcripts from different species, variations in pattern-triggered immunity (PTI) were the main causes of species-specific responses to infection by Psa. Using weighted gene co-expression network analysis, we identified species-specific expressed key lncRNAs which were closely related to plant immune response and signal transduction. Our results illustrate that different kiwifruit species employ multiple different plant immunity layers to fight against Psa infection, which causes distinct responses. We also discovered that lncRNAs might affect kiwifruit responses to Psa infection, indicating that both protein-coding regions and noncoding regions can affect kiwifruit response to Psa infection.
国家哲学社会科学文献中心版权所有