首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:Self-assembled Cubic Boron Nitride Nanodots
  • 本地全文:下载
  • 作者:Alireza Khanaki ; Zhongguang Xu ; Hao Tian
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-04297-1
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:One of the low-dimensional Boron Nitride (BN) forms, namely, cubic-BN (c-BN) nanodots (NDs), offers a variety of novel opportunities in battery, biology, deep ultraviolet light emitting diodes, sensors, filters, and other optoelectronic applications. To date, the attempts towards producing c-BN NDs were mainly performed under extreme high-temperature/high-pressure conditions and resulted in c-BN NDs with micrometer sizes, mixture of different BN phases, and containing process-related impurities/contaminants. To enhance device performance for those applications by taking advantage of size effect, pure, sub-100 nm c-BN NDs are necessary. In this paper, we report self-assembled growth of c-BN NDs on cobalt and nickel substrates by plasma-assisted molecular beam epitaxy. It is found that the nucleation, formation, and morphological properties of c-BN NDs can be closely correlated with the nature of substrate including catalysis effect, lattice-mismatch-induced strain, and roughness, and growth conditions, in particular, growth time and growth temperature. The mean lateral size of c-BN NDs on cobalt scales from 175 nm to 77 nm with the growth time. The growth mechanism of c-BN NDs on metal substrates is concluded to be Volmer-Weber (VW) mode. A simplified two-dimensional numerical modeling shows that the elastic strain energy plays a key role in determining the total formation energy of c-BN NDs on metals.
国家哲学社会科学文献中心版权所有