首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles
  • 本地全文:下载
  • 作者:Nahid Ghaderi ; Dong-Bo Zhang ; Huai Zhang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-05523-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We investigate lattice thermal conductivity κ of MgSiO3 perovskite (pv) by ab initio lattice dynamics calculations combined with exact solution of linearized phonon Boltzmann equation. At room temperature, κ of pristine MgSiO3 pv is found to be 10.7 W/(m · K) at 0 GPa. It increases linearly with pressure and reaches 59.2 W/(m · K) at 100 GPa. These values are close to multi-anvil press measurements whereas about twice as large as those from diamond anvil cell experiments. The increase of k with pressure is attributed to the squeeze of weighted phase-spaces phonons get emitted or absorbed. Moreover, we find κ exhibits noticeable anisotropy, with κ zz being the largest component and [Formula: see text] being about 25%. Such extent of anisotropy is comparable to those of upper mantle minerals such as olivine and enstatite. By analyzing phonon mean free paths and lifetimes, we further show that the weak temperature dependence of κ observed in experiments should not be caused by phonons reaching 'minimum' mean free paths. These results clarify the microscopic mechanism of thermal transport in MgSiO3 pv, and provide reference data for understanding heat conduction in the Earth's deep interior.
国家哲学社会科学文献中心版权所有