标题:Mapping resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa
摘要:Sclerotinia stem rot (Sclerotinia sclerotiorum) is a major disease of Brassica oilseeds. As suitable donors to develop resistant cultivars are not available in crop Brassicas, we introgressed resistance from a wild Brassicaceae species, B. fruticulosa. We produced 206 B. juncea-B. fruticulosa introgression lines (ILs). These were assessed for pollen grain fertility, genome size variations and resistance responses to Sclerotinia following stem inoculations under disease-conducive conditions. Of these, 115 ILs showing normal fertility and genome size were selected for cytogenetic characterization using florescent genomic in situ hybridization (Fl-GISH). B. fruticulosa segment substitutions were indicated in 28 ILs. These were predominantly terminal and located on B-genome chromosomes. A final set of 93 highly fertile and euploid (2n = 36) ILs were repeat-evaluated for their resistance responses during 2014-15. They were also genotyped with 202 transferable and 60 candidate gene SSRs. Association mapping allowed detection of ten significant marker trait associations (MTAs) after Bonferroni correction. These were: CNU-m157-2, RA2G05, CNU-m353-3, CNU-m442-5, ACMP00454-2, ACMP00454-3, EIN2-3-1, M641-1, Na10D09-1 and Na10D11-1. This is the first time such a molecular mapping technique has been deployed with introgression lines carrying genomic segments from B. fruticulosa, and the first to show that they possess high levels of resistance against S. sclerotiorum.