首页    期刊浏览 2024年09月07日 星期六
登录注册

文章基本信息

  • 标题:Physical access for residue-mineral interactions controls organic carbon retention in an Oxisol soil
  • 本地全文:下载
  • 作者:Chenglong Ye ; Tongshuo Bai ; Yi Yang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-06654-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Oxisol soils are widely distributed in the humid tropical and subtropical regions and are generally characterized with high contents of metal oxides. High metal oxides are believed to facilitate organic carbon (C) accumulation via mineral-organic C interactions but Oxisols often have low organic C. Yet, the causes that constrain organic C accumulation in Oxisol soil are not exactly clear. Here we report results from a microcosm experiment that evaluated how the quantity and size of crop residue fragments affect soil C retention in a typical Oxisol soil in southeast China. We found that there were significantly higher levels of dissolved organic C (DOC), microbial biomass C (MBC) and C accumulation in the heavy soil fraction in soil amended with fine-sized (<0.2 mm) compared with coarse-sized (5.0 mm) fragments. Attenuated total reflectance-Fourier transform infrared spectroscopy analysis further showed that fine-sized residues promoted stabilization of aliphatic C-H and carboxylic C=O compounds associated with mineral phases. In addition, correlation analysis revealed that the increased content of organic C in the heavy soil fraction was positively correlated with increased DOC and MBC. Together, these results suggest that enhancement of contact between organic materials and soil minerals may promote C stabilization in Oxisols.
国家哲学社会科学文献中心版权所有