首页    期刊浏览 2025年04月08日 星期二
登录注册

文章基本信息

  • 标题:Nanoparticle Delivery of Fidgetin siRNA as a Microtubule-based Therapy to Augment Nerve Regeneration
  • 本地全文:下载
  • 作者:Timothy O. Austin ; Andrew J. Matamoros ; Joel M. Friedman
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-10250-z
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Microtubule-stabilizing drugs have gained popularity for treating injured adult axons, the rationale being that increased stabilization of microtubules will prevent the axon from retracting and fortify it to grow through inhibitory molecules associated with nerve injury. We have posited that a better approach would be not to stabilize the microtubules, but to increase labile microtubule mass to levels more conducive to axonal growth. Recent work on fetal neurons suggests this can be accomplished using RNA interference to reduce the levels of fidgetin, a microtubule-severing protein. Methods to introduce RNA interference into adult neurons, in vitro or in vivo, have been problematic and not translatable to human patients. Here we show that a novel nanoparticle approach, previously shown to deliver siRNA into tissues and organs, enables siRNA to gain entry into adult rat dorsal root ganglion neurons in culture. Knockdown of fidgetin is partial with this approach, but sufficient to increase the labile microtubule mass of the axon, thereby increasing axonal growth. The increase in axonal growth occurs on both a favorable substrate and a growth-inhibitory molecule associated with scar formation in injured spinal cord. The nanoparticles are readily translatable to in vivo studies on animals and ultimately to clinical applications.
国家哲学社会科学文献中心版权所有