摘要:In focal ictogenesis, gamma oscillations (30-70 Hz) recorded by electroencephalography (EEG) are related to the epileptiform synchronization of interneurons that links the seizure onset zone (SOZ) to the surrounding epileptogenic zone. We hypothesized that the synchronization of interneurons could be detected as changes in the regularity of gamma oscillation rhythmicity. We used multiscale entropy (MSE) analysis, which can quantify the regularity of EEG rhythmicity, to investigate how the regularity of gamma oscillations changes over the course of a seizure event. We analyzed intracranial EEG data from 13 pediatric patients with focal cortical dysplasia. The MSE analysis revealed the following characteristic changes of MSE score (gamma oscillations): (1) during the interictal periods, the lowest MSE score (the most regular gamma oscillations) was always found in the SOZ; (2) during the preictal periods, the SOZ became more similar to the epileptogenic zone as the MSE score increased in the SOZ (gamma oscillations became less regular in the SOZ); and (3) during the ictal periods, a decreasing MSE score (highly regular gamma oscillations) propagated over the epileptogenic zone. These spatiotemporal changes in regularity of gamma oscillations constitute an important demonstration that focal ictogenesis is caused by dynamic changes in interneuron synchronization.