首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Architecture for Directed Transport of Superparamagnetic Microbeads in a Magnetic Domain Wall Routing Network
  • 本地全文:下载
  • 作者:Elizabeth Rapoport ; Geoffrey S. D. Beach
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-10149-9
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Directed transport of biological species across the surface of a substrate is essential for realizing lab-on-chip technologies. Approaches that utilize localized magnetic fields to manipulate magnetic particles carrying biological entities are attractive owing to their sensitivity, selectivity, and minimally disruptive impact on biomaterials. Magnetic domain walls in magnetic tracks produce strong localized fields and can be used to capture, transport, and detect individual superparamagnetic microbeads. The dynamics of magnetic microbead transport by domain walls has been well studied. However, demonstration of more complex functions such as selective motion and sorting using continuously driven domain walls in contiguous magnetic tracks is lacking. Here, a junction architecture is introduced that allows for branching networks in which superparamagnetic microbeads can be routed along dynamically-selected paths by a combination of rotating in-plane field for translation, and a pulsed out-of-plane field for path selection. Moreover, experiments and modeling show that the select-field amplitude is bead-size dependent, which allows for digital sorting of multiple bead populations using automated field sequences. This work provides a simple means to implement complex routing networks and selective transport functionalities in chip-based devices using magnetic domain wall conduits.
国家哲学社会科学文献中心版权所有