首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Hydrological legacy determines the type of enzyme inhibition in a peatlands chronosequence
  • 本地全文:下载
  • 作者:Samuel Alexander Festing Bonnett ; Edward Maltby ; Chris Freeman
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-10430-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Peatland ecosystems contain one-third of the world's soil carbon store and many have been exposed to drought leading to a loss of carbon. Understanding biogeochemical mechanisms affecting decomposition in peatlands is essential for improving resilience of ecosystem function to predicted climate change. We investigated biogeochemical changes along a chronosequence of hydrological restoration (dry eroded gully, drain-blocked <2 years, drain blocked <7 years and wet pristine site), and examined whether hydrological legacy alters the response of β-glucosidase kinetics (i.e. type of inhibition) to short-term drying and waterlogging. In the dry eroded gully at depth, low phenolic concentrations were associated with enhanced β-glucosidase enzyme activities (V max ) but short-term drying and waterlogging caused a significant increase of dissolved organic carbon (DOC) and phenolics associated with increases in V max (enzyme production) and K m (indicative of competitive inhibition). Inhibition within the drain blocked and pristine sites at depth exhibited non-competitive inhibition (decreased V max), whilst uncompetitive inhibition (decreased V max and K m ) occurred in surface peat explained by variation in humic substances and phenolics. These results suggest that loss of carbon by short-term drought or rewetting may occur from sites with a legacy of drought due to the release of non-inhibitory phenolics that permits enhanced enzyme activity.
国家哲学社会科学文献中心版权所有