首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2,4-dichloronitrobenzene
  • 本地全文:下载
  • 作者:Caiqin Wang ; Lu Ye ; Jie Jin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-10572-y
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Direct interspecies electron transfer (DIET) among the cometabolism microbes plays a key role in the anaerobic degradation of persistent organic pollutants and stability of anaerobic bioreactor. In this study, the COD removal efficiency increased to 99.0% during the start-up stage in the combined bioelectrode-UASB system (R1) with magnetite nanoparticles addition, which was higher than those in the coupled bioelectrode-UASB (R2; 83.2%) and regular UASB (R3; 71.0%). During the stable stage, the increase of 2,4-dichloronitrobenzene (2,4-DClNB) concentration from 25 mg L(-1) to 200 mg L(-1) did not affect the COD removal efficiencies in R1 and R2, whereas the performance of R3 was deteriorated obviously. Further intermediates analysis indicated that magnetite nanoparticles enhanced the reductive dechlorination of 2,4-DClNB. High-throughput sequencing results showed that the functional microbes like Syntrophobacter and Syntrophomonas which have been reported to favor the DIET, were predominant on the cathode surface of R1 reactor. It is speculated that the addition of magnetite nanoparticles favors the cooperative metabolism of dechlorinating microbes and electricigens during 2,4-DClNB degradation process in the combined bioelectrode-UASB reactor. This study may provide a new strategy to improve the performance of microbial electrolysis cells and enhance the pollutant removal efficiency.
国家哲学社会科学文献中心版权所有