首页    期刊浏览 2024年07月07日 星期日
登录注册

文章基本信息

  • 标题:Co@Carbon and Co 3 O4@Carbon nanocomposites derived from a single MOF for supercapacitors
  • 本地全文:下载
  • 作者:Engao Dai ; Jiao Xu ; Junjie Qiu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-12733-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Developing a composite electrode containing both carbon and transition metal/metal oxide as the supercapacitor electrode can combine the merits and mitigate the shortcomings of both the components. Herein, we report a simple strategy to prepare the hybrid nanostructure of Co@Carbon and Co3O4@Carbon by pyrolysis a single MOFs precursor. Co-based MOFs (Co-BDC) nanosheets with morphology of regular parallelogram slice have been prepared by a bottom-up synthesis strategy. One-step pyrolysis of Co-BDC, produces a porous carbon layer incorporating well-dispersed Co and Co3O4 nanoparticles. The as-prepared cobalt-carbon composites exhibit the thin layer morphology and large specific surface area with hierarchical porosity. These features significantly improve the ion-accessible surface area for charge storage and shorten the ion transport length in thin dimension, thus contributing to a high specific capacitance. Improved capacitance performance was successfully realized for the asymmetric supercapacitors (ASCs) (Co@Carbon//Co3O4@Carbon), better than those of the symmetric supercapacitors (SSCs) based on Co@Carbon and Co3O4@Carbon materials (i.e., Co@Carbon//Co@Carbon and Co3O4@Carbon//Co3O4@Carbon). The working voltage of the ASCs can be extended to 1.5 V and show a remarkable high power capability in aqueous electrolyte. This work provides a controllable strategy for nanostructured carbon-metal and carbon-metal oxide composite electrodes from a single precursor.
国家哲学社会科学文献中心版权所有