首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Host immune status-specific production of gliotoxin and bis-methyl-gliotoxin during invasive aspergillosis in mice
  • 本地全文:下载
  • 作者:Janyce A. Sugui ; Stacey R. Rose ; Glenn Nardone
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-10888-9
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Delayed diagnosis in invasive aspergillosis (IA) contributes to its high mortality. Gliotoxin (GT) and bis-methyl-gliotoxin (bmGT) are secondary metabolites produced by Aspergillus during invasive, hyphal growth and may prove diagnostically useful. Because IA pathophysiology and GT's role in virulence vary depending on the underlying host immune status, we hypothesized that GT and bmGT production in vivo may differ in three mouse models of IA that mimic human disease. We defined temporal kinetics of GT and bmGT in serum, bronchoalveolar lavage fluid (BALF) and lungs of A. fumigatus-infected chronic granulomatous disease (CGD), hydrocortisone-treated, and neutropenic mice. We harvested lungs for assessment of fungal burden, histology and GT/bmGT biosynthetic genes' mRNA induction. GT levels were higher in neutropenic versus CGD or steroid-treated lungs. bmGT was persistently detected only in CGD lungs. GT, but not bmGT, was detected in 71% of sera and 50% of BALF of neutropenic mice; neither was detected in serum/BALF of CGD or steroid-treated mice. Enrichment of GT in Aspergillus-infected neutropenic lung correlated with fungal burden and hyphal length but not induction of GT biosynthetic genes. In summary, GT is detectable in mouse lungs, serum and BALF during neutropenic IA, suggesting that GT may be useful to diagnose IA in neutropenic patients.
国家哲学社会科学文献中心版权所有