首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential
  • 本地全文:下载
  • 作者:Wenquan Cao ; Chongxiang Huang ; Chang Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-09493-7
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Superplastic materials are capable of exhibiting large tensile elongation at elevated temperature, which is of great industrial significance because it forms the basis of a fabrication method to produce complex shapes. Superplasticity with elongation larger than 500% has been widely realized in many metals and alloys, but seldomly been succeeded in low carbon low alloy steel, even though it is commercially applied in the largest quantity. Here we report ultrahigh superplastic elongation of 900-1200% in the FeMnAl low carbon steels at high strain rate of 10(-2)-10(-3) s(-1). Such high-strain-rate superplasticity was attributed to dynamic austenite reverse phase transformation from a heavily cold rolled ferrite to fine-grained ferrite/austenite duplex microstructure and subsequent limited dynamic grain coarsening, under which a large fraction of high angle boundaries can be resulted for superplastic deformation. It is believed that this finding of the low carbon low alloy steel with ultrahigh superplasticity and relative low cost would remarkably promote the application of superplastic forming technique in automobile, aeronautical, astronautical and other fields.
国家哲学社会科学文献中心版权所有