摘要:A facile seed-mediated method was developed to modify core-shell Ag nanosphere@PSPAA with another Ag layer for achieving an enhancement of their surface-enhanced Raman scattering (SERS) activity. Interestingly, an Ag bridge in the polymer shell connected the inner and outer Ag layers, resulting in a mushroom-like nanostructure. The outer Ag grew around the polymer shell to form the cap of the nanomushrooms (NMs) with the extension of the reaction time. The epitaxial growth mechanism of this novel nanostructure was investigated by tuning the type of seed from nanosphere to nanocube and nanorod. With the growth of the outer Ag cap, the SERS intensity of these Ag NMs increased significantly together with the red-shifting and broadening of their typical localized surface plasmon resonance band. Such a phenomenon can be attributed to the formation of SERS hotspots between the inner and outer Ag layers. The Ag NMs were then wrapped with a graphene oxide (GO) shell via static interactions. The GO-wrapped Ag NMs exhibited a further better SERS performance in terms of sensitivity, homogeneity and stability compared with non-wrapped ones, indicating that the heterostructure could be potentially useful for SERS-based immunoassay.