首页    期刊浏览 2024年08月22日 星期四
登录注册

文章基本信息

  • 标题:CRISPR/Cas9-induced Targeted Mutagenesis and Gene Replacement to Generate Long-shelf Life Tomato Lines
  • 本地全文:下载
  • 作者:Qing-hui Yu ; Baike Wang ; Ning Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-12262-1
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Quickly and precisely gain genetically enhanced breeding elites with value-adding performance traits is desired by the crop breeders all the time. The present of gene editing technologies, especially the CRISPR/Cas9 system with the capacities of efficiency, versatility and multiplexing provides a reasonable expectation towards breeding goals. For exploiting possible application to accelerate the speed of process at breeding by CRISPR/Cas9 technology, in this study, the Agrobacterium tumefaciens-mediated CRISPR/Cas9 system transformation method was used for obtaining tomato ALC gene mutagenesis and replacement, in absence and presence of the homologous repair template. The average mutation frequency (72.73%) and low replacement efficiency (7.69%) were achieved in T0 transgenic plants respectively. None of homozygous mutation was detected in T0 transgenic plants, but one plant carry the heterozygous genes (Cas9/*-ALC/alc) was stably transmitted to T1 generations for segregation and genotyping. Finally, the desired alc homozygous mutants without T-DNA insertion (*/*-alc/alc) in T1 generations were acquired and further confirmed by genotype and phenotype characterization, with highlight of excellent storage performance, thus the recessive homozygous breeding elites with the character of long-shelf life were generated. Our results support that CRISPR/Cas9-induced gene replacement via HDR provides a valuable method for breeding elite innovation in tomato.
国家哲学社会科学文献中心版权所有