摘要:New ionic liquids with multiple Brönsted acid sites were synthesized in ≥98% yield, and their inhibiting properties for the corrosion of carbon steel in 0.5 M HCl solution had been evaluated using electrochemical impedance spectroscopy, potentiodynamic polarization and weight loss method, finally the possible inhibiting mechanism was proposed according to UV-visible spectroscopic measurements and surface analysis including SEM and XPS techniques. The designed cation structure of Brönsted acid ionic liquids (BAILs), with one phenyl and two imidazolium rings, makes them good mixed-type inhibitors via the adsorption of BAILs on the steel surface to suppress both anodic and cathodic processes, obeying Langmuir adsorption isotherm. As potential acid catalysts, BAILs show nice corrosion inhibiting performance in acidic medium regardless of their Brönsted acidity, which is of great significance to enlarge the industry applications of BAILs.