首页    期刊浏览 2025年07月10日 星期四
登录注册

文章基本信息

  • 标题:Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism
  • 本地全文:下载
  • 作者:Hanzhu Zhang ; Peizhong Feng ; Farid Akhtar
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-12302-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:In-situ processing of tungsten aluminide and tungsten reinforced aluminium matrix composites from elemental tungsten (W) and aluminium (Al) was investigated by thermal analysis and pulsed current processing (PCP). The formation mechanism of tungsten aluminides in 80 at.% Al-20 at.% W system was controlled by atomic diffusion. The particle size of W and Al in the starting powder mixture regulated the phase formation and microstructure. PCP of micron sized elemental Al and W resulted in formation of particulate reinforcements, W, Al4W and Al12W, dispersed in Al matrix. W particles were surrounded by a ~3 μm thick dual-layer structure of Al12W and Al4W. The hardness of Al matrix, containing Al12W reinforcements, was increased by 50% compared to pure Al, from 0.3 GPa to 0.45 GPa and W reinforcements showed a hardness of 4.35 GPa. On PCP of 80 at.% Al-20 at.% W mixture with particle size of W and Al ~70 nm, resulted in formation of Al4W as major phase along with small fractions of Al5W and unreacted W phase. This suggested strongly that the particle size of the starting elemental Al and W could be the controlling parameter in processing and tailoring of phase evolution, microstructure of particulate reinforced Al matrix composite.
国家哲学社会科学文献中心版权所有