首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Peatland Ecosystem Processes in the Maritime Antarctic During Warm Climates
  • 本地全文:下载
  • 作者:Julie Loisel ; Zicheng Yu ; David W. Beilman
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-12479-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We discovered a 50-cm-thick peat deposit near Cape Rasmussen (65.2°S), in the maritime Antarctic. To our knowledge, while aerobic 'moss banks' have often been examined, waterlogged 'peatlands' have never been described in this region before. The waterlogged system is approximately 100 m(2), with a shallow water table. Surface vegetation is dominated by Warnstorfia fontinaliopsis, a wet-adapted moss commonly found in the Antarctic Peninsula. Peat inception was dated at 2750 cal. BP and was followed by relatively rapid peat accumulation (~0.1 cm/year) until 2150 cal. BP. Our multi-proxy analysis then shows a 2000-year-long stratigraphic hiatus as well as the recent resurgence of peat accumulation, sometime after 1950 AD. The existence of a thriving peatland at 2700-2150 cal. BP implies regionally warm summer conditions extending beyond the mid-Holocene; this finding is corroborated by many regional records showing moss bank initiation and decreased sea ice extent during this time period. Recent peatland recovery at the study site (<50 years ago) might have been triggered by ongoing rapid warming, as the area is experiencing climatic conditions approaching those found on milder, peatland-rich sub-Antarctic islands (50-60°S). Assuming that colonization opportunities and stabilization mechanisms would allow peat to persist in Antarctica, our results suggest that longer and warmer growing seasons in the maritime Antarctic region may promote a more peatland-rich landscape in the future.
国家哲学社会科学文献中心版权所有