摘要:Carbon sphere (CS)@ZnO core-shell nanocomposites were successfully prepared through facile low-temperature water-bath method without annealing treatment. The morphology and the microstructure of samples were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. ZnO nanoparticles with several nanometers in size decorated on the surface of the carbon sphere and formed a core-shell structure. Electrochemical performances of the CS@ZnO core-shell nanocomposites electrodes were investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge (GDC). The CS@ZnO core-shell nanocomposite electrodes exhibit much larger specific capacitance and cycling stability is improved significantly compared with pure ZnO electrode. The CS@ZnO core-shell nanocomposite with mole ratio of 1:1 achieves a specific capacitance of 630 F g(-1) at the current density of 2 A g(-1). Present work might provide a new route for fabricating carbon sphere and transition metal oxides composite materials as electrodes for the application in supercapacitors.