首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1β/ERRα signaling pathway in MCF10A-ras cells
  • 本地全文:下载
  • 作者:Xianxin Yan ; Guijuan Zhang ; Fengjie Bie
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-13505-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Alteration in cellular energy metabolism plays a critical role in the development and progression of cancer. Targeting metabolic pathways for cancer treatment has been investigated as potential preventive or therapeutic methods. Eugenol (Eu), a major volatile constituent of clove essential oil mainly obtained from Syzygium, has been reported as a potential chemopreventive drug. However, the mechanism by which Eu regulates cellular energy metabolism is still not well defined. This study was designed to determine the effect of Eu on cellular energy metabolism during early cancer progression employing untransformed and H-ras oncogene transfected MCF10A human breast epithelial cells. Eu showed dose-dependent selective cytotoxicity toward MCF10A-ras cells but exhibited no apparent cytotoxicity in MCF10A cells. Treatment with Eu also significantly reduced intracellular ATP levels in MCF10A-ras cells but not in MCF10A cells. This effect was mediated mainly through inhibiting oxidative phosphorylation (OXPHOS) complexs and the expression of fatty acid oxidation (FAO) proteins including PPARα, MCAD and CPT1C by downregulating c-Myc/PGC-1β/ERRα pathway and decreasing oxidative stress in MCF10A-ras cells. These results indicate a novel mechanism involving the regulation of cellular energy metabolism by which Eu may prevent breast cancer progression.
国家哲学社会科学文献中心版权所有