首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Discovery of targetable genetic alterations in advanced non-small cell lung cancer using a next-generation sequencing-based circulating tumor DNA assay
  • 本地全文:下载
  • 作者:Helei Hou ; Xiaonan Yang ; Jinping Zhang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-14962-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Next-generation sequencing (NGS)-based circulating tumor DNA (ctDNA) assays have provided a new method of identifying tumor-driving genes in patients with advanced non-small cell lung carcinoma (NSCLC), especially in those whose cancer tissues are unavailable or in those that have acquired treatment resistance. Here, we describe a total of 119 patients with advanced EGFR-TKI-naive NSCLC and 15 EGFR-TKI-resistant patients to identify somatic SNVs, small indels, CNVs and gene fusions in 508 tumor-related genes. Somatic ctDNA mutations were detected in 82.8% (111/134) of patients in the total cohort. Of the 119 patients with advanced NSCLC, 27.7% (33/119) were suitable for treatment with National Comprehensive Cancer Network (NCCN) guideline-approved targeted drugs. Actionable genetic alterations included 25 EGFR mutations, 5 BRAF mutations, and 1 MET mutation, as well as 1 EML4-ALK gene fusion and 1 KIF5B-RET gene fusion. In 19.3% (23/119) of the patients, we also identified genomic alterations with that could be targeted by agents that are in clinical trials, such as mTOR inhibitors, PARP inhibitors, and CDK4/6 inhibitors. Additionally, the EGFR T790M mutation was found in 46.7% (7/15) of the patients with EGFR-TKI-resistant NSCLC, suggesting that the NGS-based ctDNA assay might be an optional method to monitor EGFR-TKI resistance and to discover mechanisms of drug resistance.
国家哲学社会科学文献中心版权所有