首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Machine learning model for sequence-driven DNA G-quadruplex formation
  • 本地全文:下载
  • 作者:Aleksandr B. Sahakyan ; Vicki S. Chambers ; Giovanni Marsico
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-14017-4
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We describe a sequence-based computational model to predict DNA G-quadruplex (G4) formation. The model was developed using large-scale machine learning from an extensive experimental G4-formation dataset, recently obtained for the human genome via G4-seq methodology. Our model differentiates many widely accepted putative quadruplex sequences that do not actually form stable genomic G4 structures, correctly assessing the G4 folding potential of over 700,000 such sequences in the human genome. Moreover, our approach reveals the relative importance of sequence-based features coming from both within the G4 motifs and their flanking regions. The developed model can be applied to any DNA sequence or genome to characterise sequence-driven intramolecular G4 formation propensities.
国家哲学社会科学文献中心版权所有