首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Genetic induction of hypometabolism by ablation of MC4R does not suppress ALS-like phenotypes in the G93A mutant SOD1 mouse model
  • 本地全文:下载
  • 作者:Shachee Doshi ; Preetika Gupta ; Robert G. Kalb
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-13304-4
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Dysfunction and death of motor neurons leads to progressive paralysis in amyotrophic lateral sclerosis (ALS). Recent studies have reported organism-level metabolic dysfunction as a prominent but poorly understood feature of the disease. ALS patients are hypermetabolic with increased resting energy expenditure, but if and how hypermetabolism contributes to disease pathology is unknown. We asked if decreasing metabolism in the mutant superoxide dismutase 1 (SOD1) mouse model of ALS (G93A SOD1) would alter motor function and survival. To address this, we generated mice with the G93A SOD1 mutation that also lacked the melanocortin-4 receptor (MC4R). MC4R is a critical regulator of energy homeostasis and food intake in the hypothalamus. Loss of MC4R is known to induce hyperphagia and hypometabolism in mice. In the MC4R null background, G93A SOD1 mice become markedly hypometabolic, overweight and less active. Decreased metabolic rate, however, did not reverse any ALS-related disease phenotypes such as motor dysfunction or decreased lifespan. While hypermetabolism remains an intriguing target for intervention in ALS patients and disease models, our data indicate that the melanocortin system is not a good target for manipulation. Investigating other pathways may reveal optimal targets for addressing metabolic dysfunction in ALS.
国家哲学社会科学文献中心版权所有