首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:microRNA-181b is increased in cystic fibrosis cells and impairs lipoxin A4 receptor-dependent mechanisms of inflammation resolution and antimicrobial defense
  • 本地全文:下载
  • 作者:Anna Maria Pierdomenico ; Sara Patruno ; Marilina Codagnone
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-14055-y
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The involvement of microRNA (miR) in cystic fibrosis (CF) pathobiology is rapidly emerging. We previously documented that miR-181b controls the expression of the ALX/FPR2 receptor, which is recognized by the endogenous proresolution ligand, lipoxin (LX)A4. Here, we examined whether the miR-181b-ALX/FPR2 circuit was altered in CF. We examined human airways epithelial cells, normal (16HBE14o-), carrying the ΔF508 mutation (CFBE41o-) or corrected for this mutation (CFBE41o-/CEP-CFTR wt 6.2 kb), as well as monocyte-derived macrophages (MΦs) from CF patients. CFBE41o- cells exhibited higher miR-181b and reduced ALX/FPR2 levels compared to 16HBE14o- and CFBE41o-/CEP-CFTR wt 6.2 kb cells. An anti-mir-181b significantly enhanced ALX/FPR2 expression (+ 60%) as well as LXA4-induced increase in transepithelial electric resistance (+ 25%) in CFBE41o- cells. MΦs from CF patients also displayed increased miR-181b (+ 100%) and lower ALX/FPR2 levels (- 20%) compared to healthy cells. An anti-mir-181b enhanced ALX/FPR2 expression (+ 40%) and normalized receptor-dependent LXA4-induced phagocytosis of fluorescent-labeled zymosan particles as well as of Pseudomonas aeruginosa by CF-MΦs. These results provide the first evidence that miR-181b is overexpressed in CF cells, impairing some mechanisms of the ALX/FPR2-dependent pathway of inflammation resolution. Thus, targeting miR-181b may represent a strategy to enhance anti-inflammatory and anti-microbial defense mechanisms in CF.
国家哲学社会科学文献中心版权所有