首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Development and validation of a risk prediction model for work disability: multicohort study
  • 本地全文:下载
  • 作者:Jaakko Airaksinen ; Markus Jokela ; Marianna Virtanen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-13892-1
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Work disability affects quality of life, earnings, and opportunities to contribute to society. Work characteristics, lifestyle and sociodemographic factors have been associated with the risk of work disability, but few multifactorial algorithms exist to identify individuals at risk of future work disability. We developed and validated a parsimonious multifactorial score for the prediction of work disability using individual-level data from 65,775 public-sector employees (development cohort) and 13,527 employed adults from a general population sample (validation cohort), both linked to records of work disability. Candidate predictors for work disability included sociodemographic (3 items), health status and lifestyle (38 items), and work-related (43 items) variables. A parsimonious model, explaining > 99% of the variance of the full model, comprised 8 predictors: age, self-rated health, number of sickness absences in previous year, socioeconomic position, chronic illnesses, sleep problems, body mass index, and smoking. Discriminative ability of a score including these predictors was high: C-index 0.84 in the development and 0.83 in the validation cohort. The corresponding C-indices for a score constructed from work-related predictors (age, sex, socioeconomic position, job strain) were 0.79 and 0.78, respectively. It is possible to identify reliably individuals at high risk of work disability by using a rapidly-administered prediction score.
国家哲学社会科学文献中心版权所有