摘要:White- and brown-rot fungal decay via distinct pathways imparts characteristic molecular imprints on decomposing wood. However, the effect that a specific wood-rotting type of fungus has on proximal soil organic matter (SOM) accumulation remains unexplored. We investigated the potential influence of white- and brown-rot fungi-decayed Abies nephrolepis logs on forest SOM stocks (i.e., soil total carbon (C) and nitrogen (N)) and the concentrations of amino sugars (microbial necromass) at different depths and horizontal distances from decaying woody debris. The brown-rot fungal wood decay resulted in higher concentrations of soil C and N and a greater increase in microbial necromass (i.e., 1.3- to 1.7-fold greater) than the white-rot fungal wood decay. The white-rot sets were accompanied by significant differences in the proportions of the bacterial residue index (muramic acid%) with soil depth; however, the brown-rot-associated soils showed complementary shifts, primarily in fungal necromass, across horizontal distances. Soil C and N concentrations were significantly correlated with fungal rather than bacterial necromass in the brown-rot systems. Our findings confirmed that the brown-rot fungi-dominated degradation of lignocellulosic residues resulted in a greater SOM buildup than the white-rot fungi-dominated degradation.